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The results of a "Commonality Analysis" yield measures of the

extent to.which each variable contributes to the explanation of

variance in the dependent variable independently of the other

variables in the analysis. Such an analysis also yields measures

of the extent to which two or more of the variables share some of

their explanatory power. This shared explanatory power'may arise

from the functional interplay of the variables over time and/or

merely from their joint occurrence. For example, one might observe

that children from more affluent families tend to attend schools

that are better staffed and tend to do better on standardized

achievement tests than their less affluent counterparts. Such

observations would produce a degree of correlation among these

three classes of variables so that the effects of affluence and

school type on achievement would be difficult to disentangle.

However, for heuristic reasons an analyst might want to-attempt to

disentangle their "possible effects". This paper includesone.such

technique and some illustrative applications.

We have called this technique "Reverse Commonality" because it

takes as given aset of commonality coefficients, from them reproduces

all'possible squared multiple correlations (RSQ's) and then attempts to

produce ont or more sets of regressor (independent) variable inter-

correlations thy.' are consistent with these RSQ's. When the commonality
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coefficients have been obtained from real data, one admissible set of

regressor intercorrelations will be obtained which corresponds,

Within rounding error, to the actual or real data intercorrelations.,

When manipulated coefficients are read in to the program; the computer

will inform the analyst as to the number of admissible solutions. If

any exist the algorithm will print out the regressor intercorrelations, their

standardized regression weights and the variance explained by the

regression.

Befbre proceeding with the details of the technique we shall

develop the discussion around a three variable commonality analysis.

Later, greater numbers of variables will be dealt with.

Beaton (1973) has synthesized the work of other investigators on

commonality and has extended and clarified its properties. Consequently,

we shall deal only briefly here with its nature for the three variable
.1

case. Given three regressor variables X1, X2 and X3, their relationship

with a dependent variable Y can be expressed in terms of all of their

possible squared simple and multiple correlations with Y as follows:

RSQ (X1); RSQ (X2); RSQ (X3); RSQ (X1X2); RSQ (X1X3); RSQ (X2X3);

RSQ (K1X2X3). For m variables there are 2m - 1 correlations that can

be obtained. Commonality analysis merely forms sums or differences of

these RSQ's so, that the Y variance explained by any Xi can be expressed

in terms of the proportion it has in common with the other X's plus what

it brings uniquely to the analysis.* These latter unique terms can be

obtained as follows:

4

*Beaton (1973) has a matrix formulation of this computational 'rationale

for the general c4se.
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U (X1) = RSQ (X1X2X3) RSQ (X2X3)

(2) U(X2) = RSQ (X1X2X3) - RSQ (X1X3)

(3) U(X3) = RSQ (X1X2X3) RSQ-(XiXIT

The second order commonality coefficients are obtained by:

(4) C(X1X2) = RSQ (X1X2X3) RSQ (X3) - U(X1) U(X2)

(5) C(X1X3) = RSQ (X1X2X3).- RSQ (X2) - U(X1) U(X3)

(6) C(X2X3) =-RSQ (X1X2X3) - RSQ (c1) - U(X2) - U(X3)

while,the third order coefficient istobtained by:

(7) C(X1X2X3) = RSQ (X1X2X3) - C(X1X2) - C(X1X3) - C(X2X3)

- U(X1) - U(X2) - U(X3) ,

By virtue of this foregoing, the RSQ's for X1, X2 and X3

can each be expressed as a sum of their commonality coefficients as

follows:

(8) RSQ(X1) = C(X1X2X3) + C(X1X2) + C(X1X3) t U(Xl)

(9) RSQ(X2) = C(X1X2X3) + C(X1X2) + C(X2X3) + U(X2)

(10) RSQ(X3) = C(X1X2X3) C(X1X3) + C(X2X3) + U(X3)

and the total RSQ is given by:

(11) RSQ (X1X2X3) = C(X1X2X3) + C( i1X2) + C(X1X3) + C(X2X3)

X ) + U(X2) + U(X3)

5
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Arranging these in tabular form we have

Valy

c(x
1
X
2
)

C(X1X3)

C(X2X3)

C (XjX2X3)

..10

MO

g.

d

11

f

e

f

where the alphabetic entries represent empirically observed values and the

values in each column sum to the RSQ for the variable number heading the

column. For example, RSQ (X1) =a+d+e+g (note that the empirically'

observed value.,for a coefficient is repeated under its respective

column as appropriate). These empirically observed values can be

manipulated in a Amber of different ways and then submitted to the

algorithri ,developed by Beaton and.described in Appendix A,to see if

they yield a consistent set of correlations. The remainder of this

paper deals with the results of the systematic application of this.

Reverse Commonality piocedure.

1. Three Variable Reverse Commonality for a Fixed Level of Explained

Variation

The results of a three variable commonality analysis are given in

Table 1.1. The variables used here are composites taken from Mayeske,

et. al. (1974). The first variable is a weighted* sum of a student's

values on his Socio-Economic Status and Family Structure indices as

* The weights are taken from the first Principal Component of the

variables under consideration:

6
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well as a value for his Ethnic Group* and Boy -girl group ** membership.

, The second variable is a weighted sum of his scores on four attitudinal

and motivational indices*** while the third variable is the average

achievement of students, in the grade level that one attends school with.

These three variables are called respectively: Social Background (SB);

Motivationtl(MTVTN); and School (SCH) factors. The dependent variable,

Y, is each student's score on an Achievement composite.

* Whites were scored highest, Oriental-Americans intermediate, while all
others were scored law.

**Girls were scored highest.

***These are: Expectations for Excellence; Attitude Toward Life; Educational
Plans and Desires; and, Study Habits. For details see Mayeske, et. al.,
1972.

tSee Mayeske, et. al., 1972 for more details on the nature of this
composite.-

7
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Table 1.1.

U(Xi)

C(X1X2)

Commonality.Analysis
Motivational and

1

SB

.0236

.0654

of Achievement With Social Background,

School Factors*

2 3,

MTVTN SCR

.0307

.0654

.1149

C(X1X3) .1025 4025

C(X2X3) -.0071 -.0071

C(Xlk2X3) .11'17 ..1117 .1117

RSQ1(Xi) .3032 .2008 .322Q,

RSQ(X1X2X3) .4417

* There are 123,305 students and their 2370 schools included in
these analyses.

Given is table of commonality coeffidients we may ask: "How

do the regressor intercorrelations produced from these coefficients

compare with those actually observed"? The observed (0) values are

given in the first raw of Table 1.2 with their reproduced values (R)

directly below them.
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Table 1.2. - Observed (0) andReproduced (R) Regressor Intercorrelations
for SB, MTVTN and SCH and their Correlations With Achievement

Social Background (SB)

Motivation (MTVTN)

School Factors (SCH)

0

0

R

0

SB

1

MTVTN SCH ACHIEVEMENT
.5879

.5879

1

1

.5219

.5219

.2623

.2623

1

1

.5506

.5506

.4481

.4480

.5674

.5675

1121141111.

InspeCtion of the values shows them to be identical to the third

decimal digit in every case and to the fourth decimal digit in almost every

case with the errors occurring in the regressor-regressand correlations

(i.e., Column 4). Clearly, then for the case of these three regressors, the

algorithun reproduces the correlations to a satisfactory
;

degrees of accuracy.

Next we may ask: "If the coefficients in Table 1.1 are manipulated

in some simple manner, might they yield a consistent set of regressor

correlations?" The simplest change that suggests itself is to get rid

of the negative value. To do this we shall assume that it arose from the

variable called MTVTN and its relationship with 'the other variables.

9

11,4111,s
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---By adding the value of -.0071 to the second order coefficient for

SB, MTVTN (viz., C(X1X2)) thereby reducing it to .0583, and"setting

the C(X2X3) value to zero, we obtacin a simplified set of coefficients.

The application of the algorithm showed that a single consistent set

1

of intercorrelations could be produced which differed very little from

the observed values. They are compared in Table'1.3.

Table 1.3. Observed) (0) Correlations Compared With Those Reproduced (R)

From Man pulated

VP

Commonalities

Social Background (SB) 1 .5879 .5219 .5506

R 1 .5556 4235 .5442

Motivation (MTVTN) 0 1 .2623 .4481

R 1 .2820 .4480

School Factors (SCH) 0 1 .5674

R 1 .5737

The application of this algorithm raises two main concerns: (1)

how to reduce the sheer volume of input and output, that we have to

assimilate when there is more than one admissible solution (after

all we don't want to have to resort to a new table comparing the

O's and the R's each time); and, (2) how, to manipulate the commonality

coefficients in a systematic way. '.et us deal with each of theie

in turn.
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To make the volume of input more comprehensible and to render

the volume of output more manageable we shall arrange the values

for our commonality coefficients in columnar form as follows:

OBSERVED VALUES TRANSFORMED

tObserved T
1

T
2

T3 Tn

U(X1)

U(X2)

U(X3)

C (XiX2)

C (X1X3 )

C (X2X3 )

C(X1X2X3)

RS4,(X1X2X3)

Number of
Admissible
Solutions

The first column will contain the observed values while the

succeeding columns will contain various transformations or manipulations

of these values. There are two ways to perform these transformations.

The way that we have selected might be called,"sequential resolution".

By this we mean that the higher order commonality values are split up

and pushed into the pext 1oWer order each time. For each such trans-

formation the algorithm indicates the number of admissible solutions*.

\

*The number of admissible solut4ms is affected by the tolerance limits

one sets (see Appendix A). Generally, the more lax this. criterion is,'

the greater are We number of admissible solutions. Almost without

exception, we have used a limit of .005 or less,(see Appendix A).
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A second way which might be called "bypass resolution", split's

up the higher order values and relegates them directly to the,uniques

(U(X0's) without passing them through the intermediate orders.- For

large numbers of variables (five or more) these two approaches may

not yield the same resolutions (vft., once all the values. have'been

relegated to the uniqueness, .the unique values may differ for the

two techniques). We have chosen the former rather than the la9ler

because\we have often found the results of each step in a seque1 nce

to be informative.*

What kinds of theory then might we use as a guide to our sequential

resolutions. The one that most readily comes to mind is a'"state of

ignorance" theory. Such a theory says that we don't know how best to

allocate the higher order values and therefore that we shall split

them up so that each variable gets an equal share. In liable 1.4 **the

transformations under the columns numbered 2 and 3 represent these

resolutions Owe have already examined results for the observed

commonaliLles and those for the first transfhmation). Our procedure

)

for these was as follows:

* We do not know which one of
** In order to facilitate the

is advised to unstaple the
that are being referred to.

these techniquds is optimal.
paper's readability the reader

pages and/pull out tha tables

12



"State of Ignorance" Transformations

---Take the simplified values from the first transformation fae

shall use the simplified commonalities for these and all succeeding

transforpation04

. T2 - Split C(X1X2X3) into 1/3's and put 1/3 on each of

C(X1X2), C(X1X3) and C(X2X3)

T3 - Split each of the C(XiX4.., )!s(as modified in Tg)in half and put 1/2
\ ,

iR each oflisrelevant uniques, (e.g., 3/4 C(X1X2) is added

to U(Xi).and the other half to; U(X2), perform similar

operations for C(X1X3) with,respect to U(X1) and U(X3);

and. for C(X2X3) with respect to U(X2) and U(X3)).

We can see from inspection of Table 1.4 that T2 did not yield

any admissible solutions (probably because of the large C(X2X3) value

produced) Whereas T3 yielded five. The correlations obtained from

these five solutions are given in Table 1.5 along with the inter-
-I-.

correlations for the first transfordat'ion and those obtained from the

observed values* For the. first solution, (3A), the regressor inter-
-1

correlations are all zero. Eadh regressor correlation takes on a very high
. --

value in turn for the next three/SOlUtionse the others remain low

whereas,for the last solution, all the values are high. -IXabination of

the regression coefficients given in Table 1.6 show that they vary in

magnitude enormously tver -the five_solutions. For example, variable 1

(Social Background) takes on a high value of 2.03 and a low of - 11.25.

* We may recall that the regressor-regressand correlations
any single .resolution (or transformation).

13

are fixed for
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Variable 2 (Motivation) ranges from 4.76 down to -1.68 while Variable 3

(School factors) remains positive all the time but ranges from a 104 of

.43 to a high of 7.06. Clearly then for regressor correlations that

yield solutions consistent with the fixed regressor-regressand relaten-
,

ships given in Table l 5 (those are r14, r24 & r34), their regression

coefficients may differ over an enormously, for a fixed RSQ (XtX2X3)

of .4417. Our "state of ignorance" theory then allows a great deal of

variation in the admissible solutions.

Theory .Guided Transforms.

Let us consider next how A few content oriented theories might help

us resolve these values. Theyare:

T4 - All the variance that is,accounted for by SB (Social

Background) is also caused by it. Therefore, take every

higher order coefficient that has a one in its subscript

and add it's value to the unique value for SB (viz. add

them to U.( 1))

T5 - All the variance that is accounted for by MTVTN (Motivational

factors) is also caused by it. Therefore, take every higher

order coefficient that has a 2 in its subscript and add its

value to the unique value for MTVTN (viz. add them to U(X2)).

T6 - All the variance that is accounted for by SCH (School

factors). is also caused by it. Therefore, take every higher

order coefficient that has a 3 in its subscript and add its

value to the unique value for SCH (viz.add them to U(X3)).

14
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Inspection of Table 1.4 shows that these transformations have 5, 2

and 2 admissible solutions respectively. Let us examine their correla-

tions in Table 1.5 and their regression coefficients in Table 1.6.

Examination of Table 1.5shows that the solutions for T4-(our-every-

thing associated with Social Background belongs to Social Background,

theory) vary from zero through .58 for r12, and to about .9 for r13 and

r23. Clearly for these regressor-regressand relationships the correlations

between -SCH -(School factors) and other factors (either SB or MTVTN) can

vary to a greater extent than can those between SB and MTVTN. For.T5

(our everything associated with MTVTN belongs to MTVTN theory) the

correlations between SB and MTVTN and betWeen MTVTN and SCH stay null while

that between SB and SCH varies from a low of .47 to a 'high of about .9.

Not only are these solutions fewer in number but they are also more compact

(i.e. less variable). For T6 (our everything that is associated with SCH

belongs to SCH theory) the two solutions are alsa-compact with the SCH,

related correlations staying null while those for SB and MTVTN range from

about .52 almost up to 1.0.

1
In examining the behavior of the,regression,coefficients for these

.solutions, given in Table 1.6, we can note for T4 that they range from:

a low of about .5 to a high of about 1.5 for SB; a high of about .3 for

MTVTN to allow of about-.3; and, from a low of -1.3 for SCH to a high of

about .6. Clearly then the variability is greater over this set of

solutions for SCH than for any of the others. For T5 the variability is

least for MTVTN and greatest for SB. For T6 the variability is null for

SCH but very large for SB and MTVTN. What these results along with those

in Tables 1.4 and 1.5 suggest is that the variable or variables which have

15
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Table 1.4 Transformed
Solutions

Commonality
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Commonality Values and Their Number of Admissible

Coefficients* Observed
/

U(X1) .023e'

U(X2) .0307

U(X3) .1149

C(X1X2) .0654

C(X1X3) .1025

C(K2X3) -.0071

C(X1X2X3) .1117

RSQ(X1X2X3) .4417

NUMBER OF
SOLUTIONS 1

Commonality
Coefficients* 7

U(X1)

U(X2)

U(X3)

'C(XiX2)

C(X1X3)

C(X2X3)

C(X1X2X3)

RSQ(X1X2X3)

NUMBER OF
SOLUTIONS

TRANSFORMATIONS

1 2 3 4 5 6

.0236

.0307

.1149

.0583

.1025

0

.1117

.4417

1

,

.0236

.0307

.1149

.0955

.1397

.0372

0

.4416

NONE

.1412

.0971
N

.2034

0

0

0

0

.4417

5

.2961

.0307

.1149

0

1Y- _

0

0

.4417

5

.0236

.2007

.1149

0-

.1025

0

0,

- .4417

2

i

.0236
I

.0307.1

.3291;
1

.0583

0
--,

0

O.
i

1

.4417

2

.2111

.1157

.1149

0

0

0

0

.4417

3

TRANSFORMATIONS

8 9

.0236 .0731

.0307 .0546

.1149 .1498

.0769 .0385

.1211 .0606

.0186 .0093

.0558 .0558

.4416 .4417

NONE NONE

*VARIABLES
.1 - Social Backgroune(SB)
2 - MotiVation (MTVTN)
3 - School (SCH)

1'

16
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Table 1.5 Regressor and Regressand Correlations Reproduced from
Commonalities

r* Observed 1 3A

TRANSFORMATIONS

3B 3C 3D 3E

12 .5879 .5556 0 .9827 0 0 .9827

13 -.5219 .5235 0 0 .9836 0 .9836

14 .5506 .5442 .3758 .3758 .3758 .3758 .3758

23 .2623 .2820 0 0 0 .9353 .9353

24 .4480 .4480 .3116 .3116 .3116 .3116 .3116

34 .5675 .5737 .4510 .4510 .4510 .4510 .4510

r 4A 4B 4C 4D 4E 5A 5B

12-: 0 .5835 0 0 .5835 0 O.

13' , 0 0 .8976 0 .8976 .4709 .9031

14 .5442 .5442 .5442 .5442 .5442 .3551 .3551

23 0 0 0 :8158 .8158 0 0

24 .1752 .1752 .1752 .1752 .1752 .4480 .4480

34 .3390 .3390 .3390 .3390 .3390 .4663 .4663

r 6A 6B 7A 7B 7C

12 .5192 .9973 0 .9564 0

13 0 0 0 0 .9555

14 .2862 .2862 .4595 .4595 .4595

23 0 0 0 0 0

24 . .29,83 .2983 .3402 .3402 .3402

34 .5737 .5737 .3389 .3389 .3389

*VARIABLES

1 - Social. Background (SB)
2 - Motivation*(MTVTN)
3 - School (SCH)

17
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Table 1.6 Regression Coefficients Computed,from Reproduced Regressor-
Regressand- Correlations

Observed 1 3A s 3B

TRANSFORMATIONS

3C 3D 3E

1 .2152 .2146 .3758 2.0305 -2.0818 .3758 -11.2492

2 .2158 .3116 -1.6838 .3116 -.8809 4.7600

3
.3982 , .4005 .4510 .4510 t 2.4986 1.2749 7.0633

4A 4B 4C 4D 4E 5A 5B

1 .5442 .6700 1.234 .5442 1.5198 .1741 -.3577

2 .1752 -.2158 .1752 -.3030 .3731 .4480 .4480

3 .3390 .3390 -.7688 .5862 -1.3295 .3842 .7893

6A 6B. 7A 7B 7C

1 .1797 -2.082 .4595 1.5739 1.5569

2 .2050 2.375 .3402 -1.1652 .3402

3 .5737 .5737 .3389 .3389 -1.1487

*VARIABLES

1 - Social Background (SB)
2 - Motivation (MTVTN)
3 - School (SCH)

18
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the lirgest unique values after resolution tend to show less variability

in the r regression coefficients than those with lower unique values--a

not sur rising result.

Mixed Transformations

It may also be meaningful to perform mixed transfOrmations - that

is - transformations that are guided by a theory but at plaints where the

theory does not provide guidance a random rationale can be adopted. Some

of these are:

T7 .r The SCH factors should have only the value of their

uniqueness (U(X3)) but we doqlot know how the valuei

for the higher order.coefficients should be spread.

among TSB & MTVTN. Therefore, split C(X1X2X3) into 1/3

and add this value to each of the second order coefficients

(viz. ,C(XiXj)). Then add toU(Xi) half of the new C(X1X2)

and all of the new C(X1X3). Similarly add to U(X2) half

of the new.C(X1X2) and, all of the new C(X*C3).

T8 - This approach postul tes that only half of the variance we

observe in the thikd order can be resolved into the second

Orders, whereas the rest should remain where it is. There-

fore, take half of C(X1X2X3), split this value into 1/3's

ci.e. a' value of 1/6 of c(Xixe:,p) and add this much to each

of the C(XiXp's.

T9 - This approach takes one half of the newly created second

order values from T8, splits them ione-half (i.e. 1/4

of C(Xik.2), 1/4 of C(X1X3)etc.) and adds .each of these to

19
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its appropriate uniqueness. That is, U(X1) gets 1/4

of C(X1X2) and 1/4 of C(X1X3); U(X2) gets 1/4 of

1C(X1X3) and 1/4 of C(X2X3), etc.

Inspection of Table 1.4 shows that T7 yielded three admissible solu-

tions whereas T8 and T9 did not yield any. These results along with those

for T2 suggest that thetries about only part of the shared variance are not

as likely to yield admissible solutions.

Let us examine the nature of the solutions to T7 in Tables 1.5 and 1.6.

The correlations in Table 1.5 shoW that the values for'SB and MTVTN and

SB andiSCH range from zero to about .95 bUt never simutaneously, while

the /correlation between MTVTN and SCH stays at zero. The regression/
coefficients for the T7 solutions, in Table 1.6,vary from a low of about .45

to/a high of about 1.6 foi SB,whereas those for MTVTN vary downward from

.34 to -1.16 and those for SCH vary from about .34 down to -1.15. However,

the coefficients for MTVTN take on a slightly greater range than that of

/SCH while both of those take on a greater range than those of SB.
7/f

In this section we have examined a number of different ways that might

be used to resolve higher order commonality va mes into their lower orders

fora fixed level of variance explained,(viz.ia fixed value of the squared
/

multiple correlation). In the. next section we examine results obtained from

varying the level of explained variance.

2. Three Variable Reverse Commonality for Varying Levels of Explained

Variation

The algorithm's results may show that for a fixed level of variance

explained (i.e. in our case a fixed value ofRSQ (X1X2X3)) an analysts'

20
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particular resolution does not yield any admissible solutions. As a

consequence, the analyst may want to explore neighboring levels to see

if they yield solutions. In this section we examine results in which the

level of explained variance is systematically varied.

These computations were performed by taking the simplified:commonalities

(called Tl in Table 1.4), dividing them by their RSQ (X1X2X3) value of .4417

so that they sum to 1.00, and then scaling these values by multiplying them

by:. .1; .2; .3; .4; .5; .6; .7; .8; .9; -1.0 respectively ; these values are

given in Table 2.1. We can o1serve that each of these yielded one and only

one admissible solution.. Examination'of the regressor intercorrelations showed

that they stayed the same for each scaling condition (these values are given

in Table 1.5 under column Ti). What did change were the regressor-regressand

correlations for the different scaling conditions. These values, given in

Table 2.2, ghoc.i'a progressive increase as the scaling factor approached

1.0. The regression coefficients, given in Table 2.3, also increased

progressively in magnitude as the scaling,factor increased. Clearly then

for the commonality proportions fixed on here, a wide range of RSQ (X1X2X3)'s

will yield admissible solutions.

21
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,Table 2.1 Fixed Commonality Proportions and Their Number of Admissible

Solutions for Increasing Levels of Variance Explained

COMMONALITY
COEFFICIENTS*

OBSERVED
SIMPLIFIED .1 .2

TRANSFORMATIONS

.3 .4 .5 .6

U(X1) .0236 .0053 .0107 .0160 .0214 .0267 .0321

U(X2) .0307 .0069 .0139 .0208 .0278 .0348, .0417

,\
U(X3) .1149 .0260 .0520 .0780 .1040 .1301 ".1561

C(X1X2) .0583 .0132 .0264 .0396 .0528
I

.0660 . .0792

.C(X1X3) .1025 .0232 .0464 .0696 .0928 .1161 .1393

0- i

C(X2X3)

C(X1X2X3)

RSQ(X1X2X3)

NUMBER OF
SOLUTIONS

COMMONALITY
COEFFICIENTS*

0

.1117

.4417

1

.7

0

.0253

.0999

1

.8

0

.0506

.2000,

1

.9

0

.0759

;2999

1

1.0

0 0' 0

.1011 .1265 .1517

1

.3999' .5000 .6001

1 1

U(X1) .0374 .0427 .0481 .0534 1

U(X2) .0486 .0556 .0626 .0695

U(X3) .1821 .2081 .2341 .2601

C(X1X2) .0924 .1056 .1188 .1320

C(X1X2) .1625 .1857 ,.2089 .2321

C(X2X3) 0 0 0 0

C(X1X2X3) .1770 .2023 ,2276 .2529

RSQ(X1X2X3)' .7000 .8000 .9001 1.0000

NUMBER OF'

SOLUTIONS 1 1 1 J.

*VARIABLES

1 - Social Background (SB)
2 - Motivation (MTVTN)
3 - School (SCH)

22
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Table 2.2 Regressor -Regressand Correlations Reproduced from Fixed
Commonality Proportions and Varying, Levels of Variance Explained

r*

OBSERVED
SIMPLIFIED .1 .2 .3

TRANSFORMATIONS

.4 .5 .6 .7

14 .542 .2588 .3662 .4484 .5178 5791 .6343 .6851
\

24 .4480 .2131 '.3015 .3692 .4263 .4768 .5221 .5639

34 .5737 .2729 .3860 .4728 .5458 .6105 .6687 .7222

r* .8 .9 1.0

14 .7323 .7768 .8188

24 .6029 .6395 .6741

34 :7721 .8189 .8632'

*VARIABLES

1 - Social Background (SB)
2 - Motivation (MEM)
3 - School (SCH)

23
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Table 2.3 Regression Coefficients Computed from Admissible Solutions for
Fixed' Commonality Proportions and Varying LeVels of Variance
Explained

13*

, OBSERVED
*SIMPLIFIED .1 .2

TRANSFORMATIONS

.3 .4 .5 .6 '.7

1 .2146 .1019 .1445 .1768 .2043 .2283 .2502 , .2702

2 .2158 .1025 .1452 .1778 .2054 .2298 .2515 .2716

3 .4005 .1906 .2694 .3300 .3810 .4262 .4668 .5042

13* .8 .9 1.0

1 .2887 .3063 .3229

2 .2905 .3082 .3248

3 .5390 .5716 .6026

*VARIABLES

1 - Social Background (SB)
2 - Motivation (MTN)/
3 - School (SCa)
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We also took the same set of commonality proportions as are given

in column 1.0 of Table 2.3, relegated them to the uniquenesset according to

our theory called T7* in the previous section, and then scaled these

proportions by increments of .1, ranging from .1 to 1.0. Each one of

these yielded 3 admissible solutions which, upon examination,were found to

have the same regressor values across the different RSQ(X1X2X3) b. One

solution was the identity matrix, another had'a .96 in the r 12, location

and zero's elsewhere while the third solution had a .96 in the r 13 position

and zero's elsewhere.

From these two sets of results it would appear that if a set of

solutions can be found for fixed commonality proportions and one value of

an RSQ(X1X2X3), then they can also be found for neighboring and even

Nuite distant RSQ(X1X2X3) values. There is nothing astounding but these

results for they follow directly from the algebra of the algor hm as set

forth in Appendix A. 'However, these latter statements are so only for

commonality proportiont that are all positive. It seems obvious that if

some of the proportions are negative while others are positive, and, if

both increase in their absolute magnitudes, then a point (or value of

RSQ(X1X2X3)) will be reached beyond which admissible solutions cannot be

obtained.

3. Three Variable Reverse Commonality for Varying Levels of Unique Variation

In the preceding sections we examined results when: the level of explained

variance was held constant and the relative proportions of the variables

were manipulated; and,when the relative proportions were kept fixed and the

level of explained variance was systematically varied. An analyst may also

*This is the theory that SCH factors shouleNtive only their unique value
but,that we don't know how to splitup the higher order commonalities
and,therefore,a random rationale is adopted.
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want t9 examine how large or small a unique value a variable may &ke on

and still yield an admissible solution. For example, in the equation

(12) RSQ(X1) = C(X1X2X1) + C(XiX2) + C(X1X3) + HOW

the empirical value for p(Xl)can,be made to take on progressively larger

or smafler values. Such a manipu tion will alter not only the RSQ for

that variable but also the RSQ for all three variables combined (as can be

seen from equation 11 in the introductory section). In a sense this kind

of analysis tests how large orhow small a relationship one variable might
/-,

have with a given dependent variable and still be consistently relateetO

other regreSsor variables. For this example we have chosen to reduce the

uniq e value of one variable to see to what extent this reduction affects

1))1v

the erall results:

In Table 3 we have systematically reduced the size of the unique

value for variable X3, which represents the set of School factors (SCH).

The first set of columns in the uppermost part of Table 3 gives the set of

transformations, as follows:

T1 - this is a simplification of the observed commonalities

and is included for purposes of comparison with the

suceeding transformations. In previous sections it has

been called Tl.

T20 - the unique value for X3 in Tl is reduced by .05 while

all other values are kept conaant.

T21 - the unique value for X3 in Tl is reduced by .10 while

all other values are kept Constant.

26
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T22 - the unique value for X3 in Ti is set equal to zero

while all other values are kept constant.

Fo-r each of these transformations the algorithm .indicated that there

was only one admissible solution. In the center of the table we can observe

the trend in these solutions. The correlations between variables: 1 and 2,

1,and 4; and, 2 and 4 remain the same across the diffeleat tvansformations

f-rend this is to be expected since the coefficients fnr these variables were

not manipulated.' The correlation between variables 1 and 3 increased

substantially and this increase can be attributed to the fixed second

order coefficient,(C(X1X3)) and the fixed third order coefficient (C(X1X2X3)).

In a sense, as the unique variability of a variable is reduced but its common

'variability kept7fixed,Itstcorrelation.with the- other variables must of

necessity, increase. This trend also occurs for the correlation between

variables 2 and 1 hut,to a lesser extent. The correlation between variables

3 and 4 decline progressively, which is to be expected since this is the

relationship we manipulated when we reduced U(X3).,

It is perhaps of even greater interest to examine the trend in the

regression coefficients for these solutions. The coeffitient for variable

1 shows a progressive increase, that for variable 2 stays about the same

while that for variable 3 declines appreciably but does not become zero.

Clearly then School factors derives a portion of its explanatory power

from its relationship with the other regressor variables.*

* We also conducted a series of analyses in which the second order coefficient
for variables 2 and 3 (viz. C(X2X3)) was made increasingly negative, while
the other values were kept constant. These analyses did not yield any
admissible solutions. However, when the negative.coefficient for C(X2X3) ,

was kept at its observed value (see Table 1:1) and the coefficients were
unitized and then scaled by increments of .1, from' .1 to 1.0,.a sine

admissible solution was obtained for each such transformation.
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Table 3 Reduced Unique Values and Their Effectd

TRANSFORMATIONS

COMMONALITY OBSERVED

COEFFICIENTS* SIMPLIFIED(1) 20. 21. 22

la(x1) .0236 .0236 .0236 .0236

U(X2) .0307 .0307 .0307 .0307

U(X3) .1149 .0649 .0149 0

C(X1X2) .0583 .0583 .0583 .0583

C(X1X3) .1025 .1025 .1025 .1025

C(X2X3) 0 0 0 0

C(X1X2X3) .1117 .1117 :1117 .1117

1SQ(X1X2i3) .4417 .3917 .3417 .3268

NUMBER OF
SOLUTIONS 1 1 1

REGRESSOR-REGRESSAgD CORRELATIONS

TRANSFORMATIONS
OBSERVED

r* SIMPLIFIED (1) 20 21

1

22

12 .5556 .5556 .5556 .5556

13 .5235
\

.5944 .7252 .8505

14 .5442, .5442 .5442 .5442

23 .2820 .3114 .3528 .3688

24 .4480 .4480 .4480 .180

34 .5737 .5283 .4786 .4 28

REGRESSION COEFFICIENTS

TRANSFORMATIONS
OBSERVED

E* SIMPLIFIED 1) 20 21 22

1 .2146 .2301 .2732 .3489

2 .2158 .2195 .2253 .2233

3 .4005 .3232 .2011 .0837

*VARIABLES

1 - Social Background (SB)
2 - Motivation (MTVTN)
3 - School (SCH)
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In the next section we examine results of the algorithm for

larger numberi of variables.

4. Seven Variable Reverse CoMmonality

As the number of regressor variabled increase so too do the

potential number of admissible solutions and-their corresponding

volume of output. For example, in an analysis with 4 regressor

variables one resolution yielded 16 admissible solutions; for

5 regressors one resolution yielded 52 admissible solutions; and, for

6 regre'ssors a single resolution yielded 193 admissible solutions.

Needlessto' say, we have no desire to report on, that many results.

However, a certain number of difficulties do arise when working with a

large number of regressors and since the number of admissible

solutions were fairly low for our 7 regressor case we have chosen to
' c

del with some of these results in this section (seven regressor

variables happens also to be the maximum number that the algorithm

can currently accomodate).

Zia
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The variables used in these analyses are compoiites or indices as

developed in Mayeske, et.al., 1972. They are:

1. Socio-Economic Status

2. Family Structure and Stability

3. Ethnic GroUp Membership

4. Expectations for Excellence

5. Attitude Toward Life

6. .Study Habits

7. School Factors (the student body's Achievement Level)

8. :'Iridiv*dualzStudent4Aohievement

The first 7 variables are used as regressors while "the eighth is the

regressand* (or dependent variable).

First we should recall that with 7 variables one obtains 127 different

commonality coefficients (2m-1 where m is the number of variables). This

is usually too large a number to work with even if the volume Of output were

,1

small. However, we decided to submit our observed results of'rhe 7 variable

//
/ I

commonality analysis to the Reverse Commonality algorithm tcolee if it would

yield a single admissible solution. Actually, it yielded 3,1admissible

solutions all very similar to one another and to the obser eci correlations ,

save for a few variations in the magnitude of the correla ion between

variables 4 and 5 and, between variables 4 and' 6, as caa/be seen from Table,

4.1. The regression coefficients obtained from

30
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Table 4.1 Regressor and Regressand.Correlations Reproduced from Seven

Variable Commonalities

r*

REPRODUCED FROM
OBSERVED COMMONALITIES

OBSERVED 1 2 3 1

REPRODUCED FROM SIMPLIFIED
COMMONALITIES

2 3 4

12 .3567 .3574 .3574 .3574 .3703 .3703 .3703 .3703

13 .3714 .3719 .3719 .3719 .3748 .3748 .3748 .3748

14 .2787 .2793 .2793 .2793 .2740 .2740 .2740 .2740

15 .3736 .3739 .3739 .3739 .3795 .3795 .3795 .3795

16 .3968 :3972 .3972 .3972 .4120 .4120 .4120 .4120

17 .4346 .4345 .4345 .4345 .4472 .4472 .4472 .4472

18 .4973 .4974 .4974 .4974 .4850 .4850 .4850 .4850

23 .2999 .3007 .3007 .3007 .3019 .3019 .3019 .3019

24 .3725 -.3734 .3734 .3734 .3839 .383 .3839 .3839

25 -.4707 , .4707 .4707 .4707 .4854 .4854. .4854 .4854

26 .4723 .4715 .4715 .4715 .4967 .4967 .4967 .4967

27 .2908 .2894 .2894 .2894 .3032 .3032 .3032 .3032

28 .3259 .3260 .3260 .3260 '.3028 .3028 .3028 .3028

34 .1684 .1678 .1678 .1678 .1550 .1550 .1550 .1550

35 .2253 .2253 .2253 .2253 .2146 .2146 .2146 .214

36 .2219 .2217 .2217 .2217 .2101 .2101 .2101 .2101

37 .6165 ..6173 .6173 .6173 .6420 .6420 .6420 .6420

38 .4908 .4904 .4909 .4909 .4784 .4784 .4784 .4784

45 .5172 .5143 .7782 .5143 .5699 .7148 .5694 .7148

46 .4894 .4876 .4876 .8264 .5451 .5451 .7639 .7639

47 .1558 .1553 .1553 .1553 .1562 .1562 .1562 .1562

48 .2552 .2546 .2546 .2546 .2356 .2356 .2356 .2356

56 .6623 .6603 .6603 .6603 .7112 .7112 .7112 .7112

57 .2321 .2312 .2312 .2312 .2306 .2306 .2306 .2306

58 .3820 .3818 0818 ,.3818 .3635 .3635 .3635 .3635

67 .2331 .2327 .2327 .2327 .2344. .2344 .2344 .2344

68 .3674 .3670 .3670 .3670 .3523 .3523 .3523 .3523

*78 .5674 .5673 .5673, .5673 .5598 .5598 .5598 .5598

* The variables are: 1-Socio-Economic Status; 2-Family Structure and
Stability; 3-Ethnic Group Membershin; 4-Expectations for Excellence;
5-Attitude Toward Life; 6-Study Habits; 7-School Factors; 8-Individual
Student Achievement
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Table 4.2 Standardized Regression Weights from Observed and Reproduced

/3*

Commonalities for Seven Variables

REPRODUCED FROM OBSERVED REPRODUCED FROM SIMPLIFIED

COMMONALITIES COMMONALITIES
OBSERVED 1 2 3 1 2 3 4

1 .2116 .2116 '.2120 .2091 .2084 .2079 .2057 .1998

2 .0050 .0056 .0086 .0068 -.0203 -.0189 -.0205 -.0256

3 .1626 .1622 .1632 .1636 .1527 .1529 .1535 .1542

4 .0104 .0103 -.0738 -.0625 --.0071 -.0496 -.0490 -.1140

5 .1328 .1332 .1957 .1335 .1377 .1677 .1382 '.1777

6 .0766 .0762 .0747 .1333 .0737 .0753 .1082 .1350

7 .3235 .3235 .3208 .3213 .3268 .3258 .3259 .3244

RSQ .4517 .4516 .4537 .4528 .4253 .4264 .4262 .4298

* The variables are: 1-Socio-Economic Status; 2-Family Structure and
-kStability; 3- Ethnic GroupMembership;-4- Expectations 'for Excellence;
5-Attitude Toward Life; 6-Study Habits; 7-Schuo1 Factors; 8-Individual
Student Achievement
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these solutions, given in*Table*4.2, show that they tend to be very similar

to%those obtained from the observed correlations save for variable 4

(Expectations for Excellence) which takes on small negative values and

variables 5 (Attitude Toward Life) and 6 (Study Habits) which take on

slightly larger values for the second and third solutions, respectively.

Next, in order to reduce the sheer number of coefficients, we set

equal to zero any empirical value that had zero's for its first three

decimal digits.* The algorithm indicated that there were four admissible

solutions for this simplified set of, coefficients. The correlations and

regression coefficients obtained from these solutions are given in the

last four columns of Tables 4.1 and 4.2 respectively. Inspetion of

these values shows them to be virtually' identical to one another except

for the correlations between variables 4 and 5 and variables 4 and 6.

These latter alternate in taking on higher or lower values. Although

these correlations are not very different from one another they do differ

enough from the observed correlations to result in somewhat different

values for some of the regression coefficients, as can be seen from Table 4.2.

This is especially so for variables 2 (Family Structure) and, 6 (Study

Habits). It appears to be these attitudinal and motivational variables

then that show the greatest sensitivity to simplification of the commonalities.

In an attempt to further simplify the number of empirical values one had

to work with we set equal to zero any of these commonalities that had zero's

in the first two decimal digits.** For these simplifications the algorithm

indicated that there were not any admissible solutions.+ We then took these

*e.g. .0004 would be set to zero but.0040 would not.

**e.g. .0040 would be set to zero but .04000 would not.

+However, when the criterion was relaxed to a value of 1.0, the algorithm

indicated that there were 20 admissible solutions (see Appendix A). Whether

or not it is desirable to relax this criterion will depend upon the analysts'

objectivei. 33
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further simplified values, split them up and allocated them to the unique

values in two distinctly different ways. For each of these the algorithm

indicated that there were 15 admissible solutions. We shall not. dwell on

the nature of these results other than to note that the regressor correla-

tions often varied over a considerable range. Some of them assumed values

in the range from zero to as high as .8 or .9.

34
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5. Summary

In this paper we have examined the results of an algorithm which

is designed to take a set of commonality coefficients, either real or

manipulated,andlif possible,produce one or more sets of regressor

correlations that are consistent with them. A number of different ways

of resolving the higher order commonality values into their lower orders

were tried and the number and nature of solutions generated from them

were examined for their meaningfulness and variability. In general it

was found that this could be a meaningful exercise beCause it allows an

analyst tq test his assumptions about the nature of the confounding to

see if a solution can be obtained. If one cannot be obtained then his

assumptions must be revised. But if One can be obtained, then he can examine

them to see which kinds of variables'have the greatest sensitivity to the

assumptions. The resulting output also allows one to gauge the variability

of regression coefficients that will satisfy the same set of commonality,

values and the effectiveness of .the regression system.

This technique called "Reverse Commonality" is best suited for an

interactive computing arrangement so that an analyst can use it rapidly

in a sequential manner. Since,for a large number of variables the sheer

volume of commonality values becomes unmanageable and, since a number of

different ways are available for resolving the confounding, an algorithm

is needed which uniquely/resolves the higher order values according to

,

one's assumptions.

as
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Reverse Coimonality (REVCOM)

1. Discussion

A.B. Beaton
6/10/74

.

Let us assume that there is a variable y which has been used

in a regression analysis in which variables xj(j=1,2,...;0"have

been used as predictors. Let us.further assume that the statistics

Available to us from the regression analysis is-..either the common

alities or squared multiple correlations of y with/each possible

combination of predictors. The signs of the correlations of indi

vidualx with y are known. Our prolifWa is to compute the inter

correlations among the predictors from the known simple and multiple

correlations.

This problem must have at least one valid solution if the

known coefficients were computed from real data. There need not be

a unique solution, however, and, in the two predictor case there

will ordinarily be twa solutions. Early experience with test

problems indicates ,that theri are not very many solutions for

multipredictor systems. If artificial commonalities or squared

multiple correlations are supplied then there may be no solutions

indicating that the. correlations are not Consistent with any

possible set of real, data.

This paper presepts an algorithm for computing all possible

interpredictor correlation matrices from a given vector of common

alities and the signs of the simple correlations between y and the

x,. Commonalities can be simply converted to squared simple and

multiple correlations. We will use only the more familiar multiple

correlation coefficients for discussion here.
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Discussion
1

The information is a vector of all possible squared multiple

correlations of a dependent variable y with the independent

variables x
J
(j=1,2, 1 m) which is created from the commonalities.

There are 2*-1 such correlations which will be indicated by subscripts

R
2

I
2

...R
2"

R
2

R2 2
yl' .y2' ym' 712' y123' y123...m.

The signs of the simple correlations ryj are also known.

We viral is compute the simple correlations r
ij

(i=1,2,..m-1; =1+1,

i+2,....m) among the dependent variables. There are m(m-1)/2 such

correlations. 4
The general strategy is to'compute the possible values of rij

. 1thax-arerconsltvent with' r
4

r
2

and R
2

' then to check these For
Yi' Yi'

consistency with each other known correlation, than each, other pair

of correlations, and s forth until they are demonstrated to be

consistent-with all other variables collectively. If a possible r
ij

does not pass every such. test it ii eliminated from further con-

sideration.

.The first step is to compute the initial set of possible values

for the squared, multiple correlation for predicting y from xi and xj

. may be written

r
2 + r 2

- 2ryiryiril2 - Yl Y]
RYIJ

1-r 2

ij

which may be solved for r by

r
ij

Mt

2r
Yi

r
YJ

± + lir
Yi Y2

r
2

- R
2

(R
2

i
+r

2
yj) R

4

Yii
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Depending on the value of the value inside the radical, rij may
.

have either no solution, one solution or two solutions. Ifthe .

value of the radicand is negatiye there is no possible rij that

could combine with r
Yi

and r to create such at 1(2 and thus the

given values could not come from real data. In `the rare case
,

that the radicand is zero, r is unique. If the radicand is
A

positive then there are exactly two solutions which we will refer to
Si

as r
ij

j
,

where Sij + or - depending vn the sign of the radical.
S'
ijBy computing ria for all i and jwe have computed all r

ij

that are possible in two variable prediction.. SinCe there are up

-to 2 possible values. for each r
ij

there are 2
m(m-.1)/2 possible

combinations, of.r
ij

thuis:theesame,number of.intercorrelation,,

matrices which must be considered. Many of these may be eliminated

through evaluation of higher order relationships. To investigate

higher order relationships we have two checks:

'(1) Are the intercorrelations internally consistent? and

(2) Does this combination of intercorrelations produce the
correct higher/order multiple correlation?

These two questions can be answered by standard multiple re-

gression techniques. The SWP operator (Beaton (1964)) *is a simple

method of implementing these computations. Basically, the process

begins with 3 predictor regressions in which case there are three

off-diagonal co-relations and up to 8 possible combinations of

intercorrelations. Each is examined in order by forming a 4x4

correlation matrix (inclUding the 3 independent variables and y)

and sweeping out the independent variables. If the SWP operator
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encounters a negative pivot then this combination is internally

inconsistent. If the multiple correlation f these X,and y is-
.

not the known value within a tolerance limit, then this combination

does net fit the piobiem and is rejected. After computing the
S

(up to) 8 combinations only the r
ij

j
that are in at least one

acceptable combination ace retained. Our xperience indicates.

that many of the iotential correlations ar lost at this point. If

no combination is acceptable then there can be no solution to these

problems and thus the given multiple correlations cannot collie from

real data.

After trying all 3 variable combinations, all 4 variable, 5

variable, and higher order combinations are tried until finally the

m variable regression is performed. At this point the problem is

solved since the remaining matrices have been demonstrated to have

a positive determinant and fit all given multiple correlations.

If the*algorithm worked through all possible combinations the

computer costs might be prohibitive for large m.° The algorithm

saved considerable time by app aching the problem by successive

elimination. The 3 variable phase usually reduces the potential 0
S

r
ij ,substantially'so that there are usually not too many 4,

variable combinations worth trying; and. the 4 variable combination

,-does the same for the 5, and so forth.

*Beaton; A. E. The .Use of'Special Matrix Operators in
Statistical Calculus, Research Bulletin 64-51,
Educational Testing Service, October, 1964.
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2. REVCOM PROGRAM FLOW

(1) Read in prZYblem control card (if blank card to to (8)).
NI = # of independent vaialbes.

NV A NI-1-1 (program adds on the dependent variable).

(2) Read in signs to be used for the independent vs dependent
correlations.

(3) Call subroutine 'CRSQ',.

(a) Read in inputted'commonality table.

(b) Compute and print all possible R squares (2NI-1).
(c) Return .to main program.

(4) Develop the two-valued NVxNV correlation matrix using the

R square table. -Rtport any discrepancies.

(5) If any correlation cannot beilTiieloped go to (1).
(6) Call subroutine 'ELIM',

,(4) Set NVB' = 3.

:Select one -combination of NI variables taken NVB
at a time. If all combinations computed go to (f).

(c) For these selected NVB variables set up all possible

correlation matrices from the two-valued matrix

computed in step (4). ,Compute the R square for

each of these matrices.

(d) If one of the two Values for any of the NVBx(NVB+1)/21

possible correlations never gave an square solution'

that checked against the table .computed in step (3.b)',

eliminate it. If both values are eliminated stop the

program.

(e) If NVB=NI print each matrix that cheCks against the

'R square table along with 'its inverse and label it

a 'GOOD' case.

(f) Co to (b).

(.g) Print out the two valued correlation matrix showing

which of the NIx(NI+1)/2 x 2 values have been

elimated b'y the NVB.N4,Fder elimination.

41:
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at,

(7)

(8)

-s-

i

(0 NVB=NVB+1 if"NVB<NI go to (b).

(i) Return to main program.

Go to (1) .

END:*

'42
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3. REVCOM Program Instructions

Input

a

Purpose - Given a commonality table derive the original

correlation matrix.

1) Control Card

.Var. Explanation

'., 5 N 7 Number of Independent

--mariables in the commonality

table.

6-60 Title Any heading information.

2) ;Sign control card and X square tolerance

- Cols. ,Vir. Explanation

1 '+' or '-' (This is the sign

2

3

4

43

of the correlation between the

first independent var. anethe

dependent var.

'+', or ' -' (sign of the

co {relation between the second

independent var. and the de-

pendent var.

'+','or '-' (3rd sign)

't', or '-' (4th sign)

'+', or '-' (Nth sign)
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if Cols.
/

Var.

/

Explanation

1

(opionali 11-20 . TOL This is the largest absolute

deviation/allowed when checking

the derived A-squares against

the A-square computed from the

commonality table. If columns

11-20 an left blank the pro-
.

(. gram'will'use a defaultvalue

of .005.'

3) Commonality Table. 4

_The commonality table consists of 2n-1 input cards. There

It one card input for each uniqueness and each commonality

combination. The card contains the commonality variable

numbers identifying the combination as well as the

commonality value. The first order commonmition are read

in first, followed by the possible second order, third, etc.

U. Four Variable Problem -(2n-1 15)

1 --xxx

2 xxx
3 xxx
4 xxx
12 xxx
13 xxx
14 xxx
23 xxx
24 xxx
34 xxx
123 xxx
124 xxx
134 xxx
234 xxx
1234 xxx

I )

44
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Var. Explanation

Commonality Level

Commonality Value (F10.4)

If another problem is to be run repeat steps 1-3. If this

is the last problem insert a blank card after the input to bring

the problem to a normal termination.
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